119 research outputs found

    Development of a routinely applicable imaging protocol for fast and precise middle cerebral artery occlusion assessment and perfusion deficit measure in an ovine stroke model : a case study

    Get PDF
    Temporary middle cerebral artery occlusion (MCAO) in sheep allows modeling of acute large vessel occlusion stroke and subsequent vessel recanalization. However, rapid and precise imaging-based assessment of vessel occlusion and the resulting perfusion deficit during MCAO still represents an experimental challenge. Here, we tested feasibility and suitability of a strategy for MCAO verification and perfusion deficit assessment. We also compared the extent of the initial perfusion deficit and subsequent lesion size for different MCAO durations. The rete mirabile prevents reliable vascular imaging investigation of middle cerebral artery filling status. Hence, computed tomography perfusion imaging was chosen for indirect confirmation of MCAO. Follow-up infarct size evaluation by diffusion-weighted magnetic resonance imaging revealed fluctuating results, with no apparent relationship of lesion size with MCAO at occlusion times below 4 h, potentially related to the variable collateralization of the MCA territory. This underlines the need for intra-ischemic perfusion assessment and future studies focusing on the correlation between perfusion deficit, MCAO duration, and final infarct volume. Temporary MCAO and intra-ischemic perfusion imaging nevertheless has the potential to be applied for the simulation of novel recanalization therapies, particularly those that aim for a fast reperfusion effect in combination with mechanical thrombectomy in a clinically realistic scenario

    Hippocampus-Avoidance Whole-Brain Radiation Therapy Is Efficient in the Long-Term Preservation of Hippocampal Volume

    Get PDF
    Background and Purpose: With improved life expectancy, preventing neurocognitive decline after cerebral radiotherapy is gaining more importance. Hippocampal damage has been considered the main culprit for cognitive deficits following conventional whole-brain radiation therapy (WBRT). Here, we aimed to determine to which extent hippocampus-avoidance WBRT (HA-WBRT) can prevent hippocampal atrophy compared to conventional WBRT. Methods and Materials: Thirty-five HA-WBRT and 48 WBRT patients were retrospectively selected, comprising a total of 544 contrast-enhanced T1-weighted magnetic resonance imaging studies, longitudinally acquired within 24 months before and 48 months after radiotherapy. HA-WBRT patients were treated analogously to the ongoing HIPPORAD-trial (DRKS00004598) protocol with 30 Gy in 12 fractions and dose to 98% of the hippocampus ≤ 9 Gy and to 2% ≤ 17 Gy. WBRT was mainly performed with 35 Gy in 14 fractions or 30 Gy in 10 fractions. Anatomical images were segmented and the hippocampal volume was quantified using the Computational Anatomy Toolbox (CAT), including neuroradiological expert review of the segmentations. Results: After statistically controlling for confounding variables such as age, gender, and total intracranial volume, hippocampal atrophy was found after both WBRT and HA-WBRT (p Conclusion: HA-WBRT is a therapeutic option for patients with multiple brain metastases, which can effectively and durably minimize hippocampal atrophy compared to conventional WBRT

    Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>We evaluated the use of computerized quantification of wheezing and crackles compared to a clinical score in assessing the effect of inhaled albuterol or inhaled epinephrine in infants with RSV bronchiolitis.</p> <p>Methods</p> <p>Computerized lung sounds analysis with quantification of wheezing and crackles and a clinical score were used during a double blind, randomized, controlled nebulized treatment pilot study. Infants were randomized to receive a single dose of 1 mgr nebulized l-epinephrine or 2.5 mgr nebulized albuterol. Computerized quantification of wheezing and crackles (PulmoTrack<sup>®</sup>) and a clinical score were performed prior to, 10 minutes post and 30 minutes post treatment. Results were analyzed with Student's t-test for independent samples, Mann-Whitney U test and Wilcoxon test.</p> <p>Results</p> <p>15 children received albuterol, 12 received epinephrine. The groups were identical at baseline. Satisfactory lung sounds recording and analysis was achieved in all subjects. There was no significant change in objective quantification of wheezes and crackles or in the total clinical scores either within the groups or between the groups. There was also no difference in oxygen saturation and respiratory distress.</p> <p>Conclusion</p> <p>Computerized lung sound analysis is feasible in young infants with RSV bronchiolitis and provides a non-invasive, quantitative measure of wheezing and crackles in these infants. </p> <p><b>Trial registration number</b>: ClinicalTrials.gov NCT00361452</p

    ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI

    Get PDF
    Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org).Peer reviewe

    Selective intra-carotid blood cooling in acute ischemic stroke : a safety and feasibility study in an ovine stroke model

    Get PDF
    Selective therapeutic hypothermia (TH) showed promising preclinical results as a neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of an intracarotid cooling catheter conceived for fast and selective brain cooling during endovascular thrombectomy in an ovine stroke model. Transient middle cerebral artery occlusion (MCAO, 3 h) was performed in 20 sheep. In the hypothermia group (n = 10), selective TH was initiated 20 minutes before recanalization, and was maintained for another 3 h. In the normothermia control group (n = 10), a standard 8 French catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity (histopathology, both safety). Secondary endpoints were neurological outcome and infarct volumes. Computed tomography perfusion demonstrated MCA territory hypoperfusion during MCAO in both groups. Intranasal temperature decreased by 1.1 °C/3.1 °C after 10/60 minutes in the TH group and 0.3 °C/0.4 °C in the normothermia group (p < 0.001). Carotid artery and branching vessel patency as well as carotid wall integrity was indifferent between groups. Infarct volumes (p = 0.74) and neurological outcome (p = 0.82) were similar in both groups. Selective TH was feasible and safe. However, a larger number of subjects might be required to demonstrate efficacy
    corecore